
Code Review at Cisco Systems / 63

Code Review at Cisco
Systems

The largest case study ever done on lightweight

code review process; data and lessons.

In May of 2006 Smart Bear Software wrapped up a 10-month case

study of peer code review in the Cisco MeetingPlace1 product

group at Cisco Systems, Inc2. With 2500 reviews of 3.2 million

lines of code written by 50 developers, this is the largest case study

ever done on what’s known as a “lightweight” code review

process.

The subject of almost all published literature on code review

is of formal, heavyweight meeting-based inspections. But in recent

years many development organizations have shrugged off the yoke

of meeting schedules, paper-based code readings, and tedious

1 At the time of this writing (June 2006) Cisco is running television ads in America

touting the advantages of their teleconferencing solution. This is the story of
that development group.

2 Cisco® and MeetingPlace® are registered trademarks of Cisco Systems Inc..
These names and the information herein are reproduced with permission.

64 / Best Kept Secrets of Peer Code Review

metrics-gathering in favor of new lightweight review processes.

Certain lightweight processes appear to have the same proven

benefits and measurability found in heavyweight processes while

drastically reducing total time spent engaged in procedures.

The studies in the previous essay have already suggested that

formal meetings add hours to the process without uncovering

additional defects. Furthermore we have found that most devel-

opers prefer a faster, more lightweight approach, and managers like

the idea of a process nimble enough to be applied to all code

changes across the board, not just those dangerous enough to

warrant the time investment of a formal inspection.

But you cannot sacrifice code quality. You cannot just throw

away 30 years of evidence that heavyweight process works. Where

are the numbers to support the effectiveness of a lightweight

process, and what guidelines should be followed to ensure an

effective review?

The Smart Bear / Cisco study sought to answer exactly those

questions. We used real developers working on commercially-

available software at an established software company; no students,

no contrived code snippets, no sterile laboratory conditions.

Cisco has a long history of using various types of code review

as part of their legendary quality control. The MeetingPlace group

was no exception. In July 2005, 50 developers in the MeetingPlace

group started using a software tool for lightweight review in the

hopes that it would increase defect detection while speeding up

overall review time and removing some of the drudgery normally

associated with inspections.

We’ll analyze the results of those reviews and determine the

general characteristics of effective, efficient reviews under this

system. In the process we will demonstrate that this particular

brand of lightweight review is able to uncover as many defects with

as many process metrics in much less time than heavyweight

formal inspections.

Code Review at Cisco Systems / 65

How reviews were conducted

The reviews were conducted using Smart Bear Software’s Code

Collaborator system for tool-assisted peer review. Code Collabo-

rator is described in detail and with screenshots in the “Code

Collaborator” essay in this collection; here we’ll only summarize

the process.

Cisco wanted a review before every code change was checked

into the version control server, which in their case was Perforce®.

They used a Perforce server trigger (included with Code Collabora-

tor) that prevented any code check-in unless a review existed in the

Code Collaborator server, and that review was “complete” with all

found defects fixed and verified.

Software developers were provided with several Code Colla-

borator tools allowing them to upload local changes from the

command-line, a Windows GUI, or from a plug-in to the Perforce

GUI clients P4Win and P4V.

Reviews were performed using Code Collaborator’s web-

based user interface. Authors determined who was “invited” to be

a reviewer or observer; about half the reviews had a single review-

er, the rest two or more. Invitations were sent by Code

Collaborator via e-mail.

During the inspection, Code Collaborator presented be-

fore/after difference views to all participants. Everyone could

comment on any line of code by clicking on the line and typing.

Comments are kept threaded and are always visible next to the

code in question (see Figure 13).

66 / Best Kept Secrets of Peer Code Review

Figure 13: Code Collaborator screenshot showing

threaded comments next to Java code under in-

spection. The author is defending a design

decision.

Defects are logged like comments, also threaded by file and

line number. When an author believed a defect had been fixed, the

new files were uploaded to the same review. The web interface

then presents these new changes against the original so reviews can

verify that defects were fixed and no new defects opened. This

back-and-forth process happens as many times as is necessary for

all defects to be fixed.

Once all reviewers agree the review is complete and no de-

fects are still open, the review is complete and the author is then

allowed to check the changes into Perforce.

Code Collaborator automatically gathers key review metrics

such as man-hours spent in review and lines of code under

inspection. It is these metrics, combined with defect logs, that we

analyze below.

Code Review at Cisco Systems / 67

Thinning the herd

Some reviews in the sample set reflect special cases that we don’t

wish to analyze in general. There are two specific cases we want to

throw out of the analysis:

1. Reviews of enormous amounts of code. If many

thousands of lines of code were under review, we can

be sure this is not a true code review.

2. Trivial reviews. These are reviews in which clearly

the reviewer never looked at the code, or at least not

long enough for any real effect. For example, if the

entire review took two seconds, clearly no review ac-

tually took place.

We can visualize these cases by considering a plot of “lines of

code under inspection” against “inspection rate in lines per hour.”

From the log-log chart in Figure 14 it is apparent that there are

aberrant data points for both enormous LOC and enormous

inspection rates.

There are some clear cut-off points for rejecting samples giv-

en the data in Figure 14. For example, a 10,000 line-per-hour

inspection rate implies the reviewer can read and understand

source code at a rate of three lines per second. As another

example, a single review of 10,000 lines of code isn’t possible. It is

also apparent that the majority of reviews appear in much more

reasonable ranges.

There are several explanations for these outliers. Because re-

view was required before version control check-in, large un-

reviewed changes will still pass through the system. This explains,

for example, the reviews of many tens of thousands of lines which

are reviewed too quickly to be careful inspections.

68 / Best Kept Secrets of Peer Code Review

Inspection Rates

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1,000 10,000 100,000 1,000,000

LOC Under InspectionL
O

C
/H

o
u

r
In

s
p

e
c

ti
o

n
 R

a
te

Figure 14: Log-log plot of lines of code (LOC) un-

der inspection versus the speed of inspection (in

LOC per hour).

The columnar grouping pattern for small LOC is a

result of the LOC variable being an integer and

the logarithmic scale expanding that region.

There are also cases of reasonable inspection sizes reviewed

faster than is humanly possible. One explanation is the pass-

through review – the reviewer simply OK’s the changes without

looking at them. Another explanation is that the reviewer and

developer communicated about this review outside the system, so

by the time the official review came around the reviewer didn’t

need to look at the code. In either case we are not interested in

data from these lightning-fast reviews.

We therefore make the following rules about throwing out

reviews from the study:

Code Review at Cisco Systems / 69

1. Throw out reviews whose total duration is shorter

than 30 seconds.

2. Throw out reviews where the inspection rate is great-

er than 1500 LOC/hour.

3. Throw out reviews where the number of lines under

review is greater than 2000.

This attempt at isolating “interesting” review cases cuts out

21% of the reviews. The distribution in Figure 15 shows that the

most reviews are smaller than 200 lines of code and are inspected

slower than 500 LOC/hour.

LOC vs Inspection Rate

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

LOC under Review

In
s
p

e
c
ti

o
n

 R
a

te
 (

L
O

C
/h

o
u

r)

Figure 15: Distribution of reviews after discarding

those that cannot represent proper reviews. Most

reviews are under 150 lines of code and reviewed

slower than 500 LOC/hour.

70 / Best Kept Secrets of Peer Code Review

Inspection Rate Analysis

How fast should code be reviewed? If you go too fast you’re liable

to miss defects. Industry experts say inspection rates should not

exceed 200 lines per hour if you want an effective review. Does

review rate differ by reviewer or author or the type of code under

inspection?

We might expect a relatively constant inspection rate. That is,

it should take twice as long to review 200 lines of code than it does

to review 100 lines of code. In general, if we plot code size versus

time-to-review, we expect the values to cluster around a line that

represents the average review rate. However, Figure 16 shows this

is not the case. No clustering around a common rate, not even

when we zoom in on the “cluster” of data with reviews under one

hour and under 200 lines.

Although this result is unexpected, it’s great news for our

analysis. It means that in this experiment review inspection rates

and sizes vary over a wide range of values, which means we have a

good sampling of data to use when answering questions like “Does

inspection rate or inspection size affect the number of defects

found?” or “What inspection rate makes the reviewer most

efficient at finding defects?”

Indeed, the next logical question is: “What are the factors that

determine the inspection rate?” Do detail-oriented reviewers

agonize over every line? Does the guy with empty Red Bull cans

all over his cubicle race through code? Do certain files or modules

take longer to review?

Code Review at Cisco Systems / 71

Inspection Rates

0

1

2

3

4

5

0 500 1,000 1,500 2,000

LOC Under Inspection

H
o

u
rs

 t
o

 I
n

s
p

e
c

t

Inspection Rates (Zoomed In)

0.00

0.25

0.50

0.75

1.00

0 50 100 150

LOC Under Inspection

H
o

u
rs

 t
o

 I
n

s
p

e
c
t

Figure 16: Plotting inspection size versus time, in

total and zoomed into the cluster near the origin.

There is no apparent systematic "inspection rate."

The absence of data points below the invisible line

with slope 1/1500 is due to our throwing out

reviews with high inspection rates.

72 / Best Kept Secrets of Peer Code Review

Does the inspection rate vary by reviewer?

Do some reviewers zoom through code while others linger?

Do your star developers take longer because they are given the

hardest code to review? Does the identity of the reviewer make

the inspection rate predictable?

Unfortunately the assumptions of ANOVA3 are not met for

these data, so we investigated individual reviewer rates by hand. A

typical example is shown in Figure 17 for Reviewer #3. Clearly

this reviewer has no one rate4.

Inspection Rate for Reviewer #3

0

5

10

15

20

25

30

0 50 100 150 200 250 300

LOC under Review

M
in

u
te

s
 t

o
 I
n

s
p

e
c
t

Figure 17: An analysis of inspection rate for Re-

viewer #3 shows there is no single rate and

identifies some interesting special cases along the

y-axis.

3 ANalysis Of VAriance – the standard statistical technique for determining the

relative influence of many independent variables on a dependent variable.
4 The best-fit rate is only R2=0.29.

Code Review at Cisco Systems / 73

We did notice something odd. There are four reviews of 1 or

2 lines of code that each took over 15 minutes to complete. The

other reviews that took that long had over 100 lines of code!

These might be aberrant, and removing aberrant data points might

give us a statistically significant inspection rate. So we took a

closer look.

Each of these outlier cases was explainable. In one case, a

separate review contained the real changes; the reviewer had simply

referred back to the first frequently while looking at the second. In

all other cases there was a lot of dialog between the reviewer and

the author or other reviewers. These code modifications, though

small in physical size, all seemed to have significant ramifications

for the rest of the system according to the comments.

 So after close inspection it was clear that these data points

did belong in our data set. And this in turn means that there still is

not a clear inspection rate.

Another feature of the single-reviewer graphs (e.g. Figure 17)

is the cluster of small-change, fast reviews near the origin, just as

we saw with the global inspection rate graphs. And once again,

when we zoomed into that area alone it was clear that no particular

rule governs inspection rate, even for a single reviewer (see Figure

18).

But occasionally we found a reviewer who seemed to have a

more regular inspection rate. Figure 19 shows one example with a

decent inspection rate correlation. However these were rare and

usually associated with reviewers who hadn’t participated in many

reviews yet; presumably as they encountered more types of source

code they too would start to show a larger spread.

74 / Best Kept Secrets of Peer Code Review

Inspection Rate for Reviewer #44, Zoomed In

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

LOC under Review

M
in

u
te

s
 t

o
 I
n

s
p

e
c
t

Figure 18: Another example showing no pattern in

inspection rate even when zoomed into the mass

of data points near the origin.

Inspection Rate for Reviewer #2

R
2
 = 0.7576

0

5

10

15

20

25

0 50 100 150 200 250 300 350

LOC under Review

M
in

u
te

s
 t

o
 I
n

s
p

e
c
t

Figure 19: Example of a reviewer who appears to

have a consistent inspection rate.

Code Review at Cisco Systems / 75

Does the inspection rate vary by author?

So the reviewer doesn’t determine the rate, but perhaps the

author does. Different authors work on different modules and

types of code. Some authors might write code that takes longer to

read.

Again, we find the same results (Figure 20): No linear rela-

tionship, clustering around the origin.

The column of data points at LOC=141 needs to be ex-

plained. This is review #1174 which happened to have six

different (and simultaneous) reviewers. Each participant took a

different amount of time to examine the code and talk about it

with the others.

Inspection Rate for Author #19

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

LOC under Review

M
in

u
te

s
 t

o
 I
n

s
p

e
c
t

Figure 20: No pattern in per-author inspection

rates. The column of points at LOC=141 is ex-

plained in the text.

76 / Best Kept Secrets of Peer Code Review

In fact, review #1174 constitutes additional evidence that in-

spection rate doesn’t depend on the reviewer. All six reviewers

were examining and chatting about a single review, yet the amount

of time spent during the review varied widely.

Conclusion for inspection rate

We found no metric that correlated significantly with inspec-

tion rate. It is clear that many factors combine to determine the

speed at which a reviewer will scan a set of code changes.

But none of this means all these reviews were equally effec-

tive or efficient at finding defects. The literature suggests that slow

inspections uncover more defects. But before we can explore

review effectiveness we first need to decide what constitutes a

“defect.”

Counting Defects

What is a “defect?” Before we get into defect rate and density

analysis we need to define exactly what a “defect” means and how

we will identify defects in our sample data here.

Although the word “defect” has an inherent negative conno-

tation, in code review it is defined in this way:

When a reviewer or consensus of reviewers determines that code must be

changed before it is acceptable, it is a “defect.” If the algorithm is wrong,

it’s a defect. If the code is right but unintelligible due to poor

documentation, it’s a defect. If the code is right but there’s a

better way to do it, it’s a defect. A simple conversation is not a

defect nor is a conversation where a reviewer believed he found a

defect but later agreed that it wasn’t one. In any event a defect is

an improvement to the code that would not have occurred without

review.

Counting defects in Code Collaborator should be easy in

theory because the software includes a built-in defect logging

system that not only logs defects against files and line numbers but

Code Review at Cisco Systems / 77

also allows for a selection of severity and type. Unfortunately this

theory does not apply with this data.

In particular, reviewers and authors are free to communicate

the existence of a defect without creating a proper defect record in

the database. Furthermore, with earlier versions of the software

the workflow surrounding defects was confusing, so the path of

least resistance was to talk about defects but not necessarily to

open them.

Therefore we cannot just use the defect data from the data-

base as a true measure of defects. Instead we took a random

sample of 300 reviews and studied the conversations in each one

to measure the number of true defects as defined above.

Defect Density Analysis

Almost all code review process analysts want to measure “defect

density,” meaning the number of defects found per 1000 lines of

code. This number is often associated with review “effectiveness”

in that a more effective review will uncover more defects per line

of code compared with a cursory review. In a predictive capacity,

the density number allows us to answer questions like “How many

defects will we expect code review to uncover in 10,000 lines of

code?”

Our reviews had an average 32 defects per 1000 lines of code.

61% of the reviews uncovered no defects; of the others the defect

density ranged evenly between 10 and 130 defects per kLOC.

Defect density and review size

The relationship between defect density and the amount of

code under review is made clear by Figure 21.

78 / Best Kept Secrets of Peer Code Review

Defect Density vs. LOC

0

50

100

150

200

0 200 400 600 800 1000

LOC under Review

D
e

fe
c
t

D
e
n

s
it

y
 (

d
e
fe

c
ts

/k
L

O
C

)

Figure 21: As the amount of code under review

increases reviewers become less effective at find-

ing defects assuming a constant true number of

defects per kLOC.

Reviewers are most effective at reviewing small amounts of

code. Anything below 200 lines produces a relatively high rate of

defects, often several times the average. After that the results trail

off considerably; no review larger than 250 lines produced more

than 37 defects per 1000 lines of code5.

5 The critical reader will notice we’re tacitly assuming that true defect density is

constant over both large and small code changes. That is, we assume a 400-line
change necessarily contains four times the number of defects in a 100-line
change, and thus if defect densities in code review fall short of this the review
must be “less effective.” Current literature generally supports this assumption
although there are clearly cases where we would naturally expect large code
changes to have fewer defects per line, e.g. a new class interface with detailed
documentation and no executable code.

Code Review at Cisco Systems / 79

These results are not surprising. If the reviewer is over-

whelmed with a large quantity of code he won’t give the same

attention to every line as he might with a small change. He won’t

be able to explore all the ramifications of the change in a single

sitting.

Another explanation comes from the well-established fact

that after 60 minutes reviewers “wear out” and stop finding

additional defects6. Given this, a reviewer will probably not be

able to review more than 300-400 lines of code before his perfor-

mance drops.

But this hypothesis is more directly measurable by consider-

ing the inspection rate.

Defect density and inspection rate

It makes sense that reviewers hurried through a review won’t

find as many defects. A fast inspection rate might mean the

reviewer didn’t take enough time, or it could mean the reviewer

couldn’t give enough time for the large quantity of code under

review.

The “slower is better” hypothesis is confirmed in Figure 22.

Reviewers slower than 400 lines per hour were above average in

their ability to uncover defects. But when faster than 450

lines/hour the defect density is below average in 87% of the cases.

6 A compelling example of this is given in the “Brand New Information” essay.

80 / Best Kept Secrets of Peer Code Review

Defect Density vs. Inspection Rate

0

25

50

75

100

125

150

0 200 400 600 800 1000 1200 1400

Review Inspection Rate (LOC/hour)

D
e

fe
c
t

D
e
n

s
it

y
 (

d
e
fe

c
ts

/k
L

O
C

)

Figure 22: Reviewers become less effective at

finding defects as their pace through the review

accelerates.

Defect density and author preparation

Could authors eliminate most defects before the review even

begins? If we required developers to double-check their work,

maybe reviews could be completed faster without compromising

code quality. We were able to test this technique at Cisco.

The idea of “author preparation” is that authors should anno-

tate their source code before the review begins. Annotations guide

the reviewer through the changes, showing which files to look at

first and defending the reason and methods behind each code

modification. The theory is that because the author has to re-think

all the changes during the annotation process, the author will

himself uncover most of the defects before the review even begins,

thus making the review itself more efficient. Reviewers will

Code Review at Cisco Systems / 81

uncover problems the author truly would not have thought of

otherwise.

If author preparation has a real effect it will be to reduce the

number of defects found during the inspection. This means a lower

defect density because in theory the author has already removed most

of the defects.

So we tested the hypothesis: “Reviews with author prepara-

tion have smaller defect densities compared to reviews without.”

It is easy to detect “author preparation” in our data because we

record every comment, threaded by file and line of code. Without

author preparation, conversations are typically started by a

reviewer or observer and often answered by the author. Author

preparation is signified by the author kicking off the conversation.

In our manual scan of reviews we found almost no cases where the

author started the conversation and yet wasn’t prepping the

reviewer.

The relationship between author preparation and defect den-

sity is shown in Figure 23. The data supports our hypothesis in

two specific ways. First, for all reviews with at least one author

preparation comment, defects density is never over 30; in fact the

most common case is for there to be no defects at all! Second,

reviews without author preparation comments are all over the map

whereas author-prepared reviews do not share that variability.

Clearly author preparation is correlated with low defect densi-

ties. But there are at least two ways to explain this correlation,

each leading to opposite conclusions about whether author

preparation should be mandatory.

82 / Best Kept Secrets of Peer Code Review

Effect of Author Preparation on Defect Density

0

20

40

60

80

100

120

140

0 2 4 6 8 10

Number of Author Prep Comments

D
e

fe
c
t

D
e
n

s
it

y
 (

D
e
fe

c
ts

/k
L

O
C

)

Without Preparation With Preparation

Figure 23: When the author takes the time to

prime the review with explanatory comments, the

number of defects found is very low and often ze-

ro. Without preparatory comments the defect

density varies widely.

One conclusion is that the very act of deeply preparing for a

review causes the author to identify and correct most defects on

his own. The analogous adage is “I read I forget; I see I remem-

ber; I teach I understand.” We all have personal experience to

back this up; when you’re forced to explain your work to someone

else, anticipating their questions and teaching them your tech-

niques, you uncover things you hadn’t thought about before.

The other conclusion is that prepping disables the reviewer’s

capacity for criticism. Author comments prime the reviewer for

what to expect. As long as the code matches the prose, the

reviewer is satisfied. Because the reviewer is guided he doesn’t

think outside the box, doesn’t approach the problem fresh, and

Code Review at Cisco Systems / 83

doesn’t bring new insight to the problem. The reason defect

density is low for an author-prepared review is not because the

author pre-fixed defects, but rather because the reviewers aren’t

looking hard enough.

We believe the first conclusion is more tenable. A survey of

the reviews in question show the author is being conscientious,

careful, and helpful, and not misleading the reviewer. Often the

reviewer will respond or ask a question or open a conversation on

another line of code, demonstrating that he was not dulled by the

author’s annotations.

Indeed, we believe these preparation comments belie a fun-

damental personal development philosophy of attention to detail,

consideration of consequences, and general experience. That is,

we believe the developers who are naturally meticulous will exhibit

this in the form of preparation – it’s just another way of expressing

their cautious approach. Even with developers who are not

naturally this way, we believe that requiring preparation will cause

anyone to be more careful, rethink their logic, and write better

code overall.

Defect Rate Analysis

Where defect density measures a review’s effectiveness, defect rate

– defects per hour – measures a review’s efficiency. It answers the

question, “How fast do we uncover defects?”

The overall defect rate was 13 defects per hour with 85% of

the reviews slower than 25 defects per hour.

With defect density we determined that large reviews resulted

in ineffective reviews. Will a large review also have a detrimental

effect on defect rate?

From Figure 24 it is clear that review size does not affect the

defect rate. Although the smaller reviews afforded a few especially

high rates, 94% of all reviews had a defect rate under 20 defects

per hour regardless of review size.

84 / Best Kept Secrets of Peer Code Review

So reviewers are able to uncover problems at a relatively fixed

rate regardless of the size of the task put in front of them. In fact,

the take-home point from Figure 24 is that defect rate is constant

across all the reviews regardless of external factors.

Defect Rate by LOC

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

LOC under Review

D
e
fe

c
t

R
a
te

 (
d

e
fe

c
ts

/h
o

u
r)

Figure 24: Defect rate is not influenced by the size

of the review.

Code Review at Cisco Systems / 85

Conclusions

We believe our results allow us to conclude the following:

 LOC under review should be under 200, not to exceed

400. Anything larger overwhelms reviewers and defects

are not uncovered.

 Inspection rates less than 300 LOC/hour result in best

defect detection. Rates under 500 are still good; expect to

miss significant percentage of defects if faster than that.

 Authors who prepare the review with annotations and

explanations have far fewer defects than those that do not.

We presume the cause to be that authors are forced to

self-review the code.

 Total review time should be less than 60 minutes, not to

exceed 90. Defect detection rates plummet after that time.

 Expect defect rates around 15 per hour. Can be higher

only with less than 175 LOC under review.

 Left to their own devices, reviewers’ inspection rate will

vary widely, even with similar authors, reviewers, files, and

size of the review.

Given these factors, the single best piece of advice we can

give is to review between 100 and 300 lines of code at a time and

spend 30-60 minutes to review it.

Smaller changes can take less time, but always spend at least 5

minutes, even on a single line of code7.

Lightweight vs. Heavyweight

How do our results compare with those from heavyweight formal

inspections? Were our lightweight inspections less effective at

uncovering defects? Did they really take less time?

7 We saw many reviews where a change to a single line of code had ramifications

throughout the system.

86 / Best Kept Secrets of Peer Code Review

Some of our results exactly match those from established lite-

rature. It is well-established that total review time should be under

90 minutes and that slower inspections yield more defects.

Other results are quite different. Across four of the studies of

heavyweight inspections given in the previous essay the average

defect detection rate was 2.6 defects per hour8; our reviews were

seven times faster. This is to be expected since our reviews didn’t

include two-hour inspection meetings with 3-5 participants.

However the critical reader will point out that faster is only

better if the same number of defects were uncovered than would

have been under a formal inspection process. Unfortunately

because this was a study in situ and not in a laboratory, we don’t

know how each of these reviews would have fared with a different

process. We can point to the work of Votta and others from the

previous essay for evidence that the lack of inspection meetings

did not significantly decrease the number of reported defects, but

we would have preferred to compare trials of the same code

reviewed in both ways9.

In light of these other studies, we conclude that lightweight

review using Code Collaborator is probably just as effective and

definitely more time-efficient than heavyweight formal inspections.

This is not to say that formal inspections don’t have a place in

the software development process. Many of our other Code

Collaborator customers perform formal inspections instead of or

on top of lightweight reviews. But heavyweight process takes too

much time to be practical with many code changes; here the

lightweight process provides measurable, respectable results fast

8 0.69 from Blakely 1991, 5.45 from Dunsmore 2000, 1.31 from Conradi 2003,

and 3.06 from Kelly 2003.
9 We cannot give a single number for “expected defect density” for formal

inspection because studies differ widely on this point. For example, Blakely
1991 found 105 defects per kLOC where Laitenberger 1999 found 7 and Kelly
2003 only 0.27!

Code Review at Cisco Systems / 87

enough to be realistically applied during almost every part of the

application development lifecycle.

Future Study

We would like to compare heavyweight and lightweight reviews on

the same set of code. We would like to experiment with specific

rules of review to see how we might improve defect density or

defect rate numbers. Would an enforced minimum inspection-

time rule increase defect densities? Would enforcing author

preparation comments result in more defects detected in less time?

Would reviewer-training result in better defect detection? Would a

per-file-type or per-author checklist improve defect detection?

We are currently looking for development groups who would

like to participate in future studies where some of these conclu-

sions can be tested directly.

Check with the Smart Bear website for new studies, and

please let us know if you would like to participate in one yourself.

